Aeroelastic Analysis of Bridges: Effects of Turbulence and Aerodynamic Nonlinearities

نویسندگان

  • Xinzhong Chen
  • Ahsan Kareem
چکیده

Current linear aeroelastic analysis approaches are not suited for capturing the emerging concerns in bridge aerodynamics introduced by aerodynamic nonlinearities and turbulence effects. These issues may become critical for bridges with increasing spans and/or with aerodynamic characteristics sensitive to the effective angle of incidence. This paper presents a nonlinear aerodynamic force model and associated time domain analysis framework for predicting the aeroelastic response of bridges under turbulent winds. The nonlinear force model separates the aerodynamic force into lowand high-frequency components according to the effective angle of incidence. The low-frequency force component is modeled utilizing quasi-steady theory. The high-frequency force component is based on the frequency dependent unsteady aerodynamic characteristics, which are similar to the traditional force model but vary in space and time following the low-frequency effective angle of incidence. The proposed framework provides an effective analysis tool to study the influence of structural and aerodynamic nonlinearities and turbulence on the bridge aeroelastic response. The effectiveness of this approach is demonstrated by utilizing an example of a long span suspension bridge with aerodynamic characteristics sensitive to the angle of incidence. The influence of mean wind angle of incidence on the aeroelastic modal properties and the associated aeroelastic response and the sensitivity of bridge response to nonlinear aerodynamics and low-frequency turbulence are examined. DOI: 10.1061/~ASCE!0733-9399~2003!129:8~885! CE Database subject headings: Flutter; Buffeting; Turbulence; Bridges; Wind forces; Aerodynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New frontiers in aerodynamic tailoring of long span bridges: an advanced analysis framework

Significant developments in bridge aeroelastic analysis have been made utilizing realistic aerodynamic force modeling for bridges with bluff sections under turbulent winds. With these developments as a background, this paper highlights state-of-the-art developments in the aeroelastic analysis and identifies new frontiers in aerodynamic tailoring of long span bridges. Challenges in the aeroelast...

متن کامل

Toward Better Understanding of Turbulence Effects on Bridge Aerodynamics

With the trend of variable cross-sections for long-span bridges from truss-stiffened to quasi-streamlined, and then to multiple-box cross-section geometries, the importance of aeroelastic performance is becoming increasingly significant in wind-resistant design. This article shows that there is clearly insufficient qualitative as well as quantitative understanding of turbulence effects on bridg...

متن کامل

Numerical aeroelastic analysis of wind turbine NREL Phase VI Rotor

This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI1 responses of HAWT2. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. Aeroelastic responses of the blade were obtained by ...

متن کامل

Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method

The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...

متن کامل

Evaluation of 2-D Aeroelastic Models Based on Indicial Aerodynamic Theory and Vortex Lattice Method in Flutter and Gust Response Determination

Two 2-D aeroelastic models are presented here to determine instability boundary (flutter speed) and gust response of a typical section airfoil with degrees of freedom in pitch and plunge directions. To build these 2-D aeroelastic models, two different aerodynamic theories including Indicial Aerodynamic Theory and Vortex Lattice Method (VLM) have been employed. Also, a 3-D aeroelastic framework ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003